2001 RELAPS5 Users Seminar
Sun Valley, Idaho
September 5-8, 2001

An Executive Program For Use With RELAP5-3D®

W. L. Weaver
Bechtel BWXT Idaho, LLC
Idaho National Engineering and Environmental Laboratory
P.O. Box 1625
2525 North Fremont Ave.
Idaho Falls, ID 83415-3880

E. T. Tomlinson and D. L. Aumiller
Bechtel Bettis, Inc.
Bettis Atomic Power Laboratory
P.O. Box 79
West Mifflin, PA 15122-0079

Abstract

An executive program has been developed that coordinates the coupling of any
number of other computer programs to perform integrated analyses of nuclear power
reactor systems and related experimental facilities. The ability to couple programs
allows the analyst to apply different analytical models to specific domains in the
problem to achieve accurate results. The coupling is accomplished using the PVM
message passing software and the executive program manages all phases of a coupled
computation. It starts up and configures a PVM virtual machine, spawns all of the
coupled processes on the PVM virtual machine, coordinates the time step size
between the coupled codes, manages the production of printed and plottable output
as well as restart files, and shuts the PVM virtual machine down at the end of the
computation. The executive program also monitors the status of the coupled
computation, repeating time steps as needed to obtain an accurate solution and
terminating a coupled computation gracefully if one of the coupled processes is
terminated by the computational node on which it is executing. This paper discusses
the application of the executive to RELAP5-3D®.

2001 RELAPS5 Users Seminar
Sun Valley, Idaho
September 5-8, 2001

1. Background

Several previous papers (Martin, 1995; Aumiller, 2001a; Weaver, 2001 and Aumiller,
2001b) have described the methodologies by which the RELAP5-3D°® computer
program (RELAP5-3D, 1999) may be coupled to another computer code either
explicitly or semi-implicitly. The first two papers (Martin, 1995 and Aumiller, 2001a)
describes how RELAP5-3D® was coupled explicitly to both another instance of
RELAP5-3D® and to a Computational Fluid dynamics (CFD) code. The two final
papers (Weaver, 2001 and Aumiller, 2001b) describes the methodology by which
RELAP5-3D® can be coupled to another thermal-hydraulic code using a semi-implicit
coupling methodology. Each of the coupling methodologies is discussed briefly to
familiarize the reader with the concepts.

The basis of any coupling methodology is that the problem is divided into multiple
domains where each domain can be simulated by a different computer program, or by
a different “instance” of any of the programs. Figure 1 shows a schematic of a
simulation problem in which there are two connections between the two problem
domains. In Figure 1, volume 1 is adjacent to and connected to volume I, and volume
2 is adjacent to and connected to volume Il. The boundary volumes in one of the
domains (i.e. 1 and 2) represent normal volumes in the interior of the other
computational domain (i.e. I and I1). Information about these volumes must be passed
between the domains at the coupling boundary to achieve an integrated solution.
Coupling methodologies for passing this information between programs can be
developed based on a number of different numerical methods.

A schematic of a fully explicit coupling methodology is shown in Figure 2. The dashed
arrows in Figure 2 indicate data flow between the domains. In this coupling
methodology, pressures in the boundary volumes are held constant during each time
step and are updated at the end of the time step. The constant boundary pressures
cause the stability of the coupled systems to be limited by the sonic Courant condition.
As proof of this restriction, an analysis using fully explicit coupling without regard to
the sonic Courant limit was performed and, as expected, numerical oscillations were
observed (Aumiller, 2001a). This restriction makes fully explicit coupling impractical.

The semi-implicit coupling algorithm is shown schematically in Figure 3. Dashed
arrows in Figure 3 indicate data exchanges between master and slave processes. To
provide numerical stability in the semi-implicit algorithm, consistent new time
velocities and pressures are required for both codes. To satisfy this requirement of
consistent new-time velocities and pressures, the changes in the pressures for all
volumes in the master computational domain are represented as linear functions of
the mass and energy flow rates in the coupling junctions. The coefficients in these
linear relations are transmitted to the slave process for the coupling volumes in the
master process. Using these coefficients, the slave process can simultaneously
calculate the mass and energy flow rates across the coupling location and the change
in the pressure of the coupled volume in the master process. These mass and energy

2001 RELAPS5 Users Seminar
Sun Valley, Idaho
September 5-8, 2001

flow rates are then transmitted back to the master process where they are used to
compute the changes in pressure in a manner consistent with the slave process.

All of the coupling between RELAP5-3D® and the other codes has been performed
using the Parallel Virtual Machine (PVM) message passing software developed at
Oak Ridge National Laboratory (Geist, 1993). Data items are passed between the
coupled codes in messages having unique message identifiers. In the original
implementation of the coupling methodology (Weaver, 2001), RELAP5-3D could only
be coupled to one other computer code. Other restrictions inherent in the original
implementation of the coupling methodology in RELAP5-3D€ include the lack of
coordination of the time step size to be used by the coupled codes, the inability to
monitor the status of the two coupled codes, and the lack of coordination in the printed
and plottable output of the two coupled codes. Each code was required to choose its
own time step size which forced the user to use a fixed time step size (i.e., fixed so that
they would use the same time step size for semi-implicit coupling) or fixed simulation
time intervals for explicit coupling (the explicit coupling algorithm exchanges data
between coupled processes at fixed time intervals). The inability to monitor the status
of the code also forced the user to choose a time step size in such a way that the time
step advancements would always be successful so that no time step repeats or time
step size reductions would be necessary. The user also had to configure the PVM
virtual machine by hand before executing the coupled calculation and the coupled
codes had to be executed on the same computational node. The executive program was
developed to remove these restrictions and to make the coupling methodology used by
RELAP5-3D® more versatile.

2. Design of the Executive Program

The executive program was designed to remove the restrictions of the original
implementation of the coupling methodology in RELAP5-3D®. It has five major
responsibilities.

= It must configure the PVM virtual machine, starting the PVM daemon
process on the computational nodes comprising the PVM virtual
machine.

= It must start up the coupled processes on the computational nodes.

= It must tell each of the coupled processes what data to send to and what
data to receive from the other processes.

< It must manage the time advancements of the coupled computation,
coordinating the time step size between the several coupled codes,
monitoring the status of the advancements and directing code backups
and time step repeats as necessary.

2001 RELAPS5 Users Seminar
Sun Valley, Idaho
September 5-8, 2001

< It must coordinate the production of printed and plottable output
between the coupled codes so that computational results are available
from all of the coupled codes at the same simulation times during the
computation.

Programs that are coupled synchronously exchange data every time step while
programs that are coupled asynchronously do not exchange data each time step.
Programs that are semi-implicitly coupled must be coupled synchronously while
programs that are explicitly coupled can be either synchronously or asynchronously
coupled. A schematic of a prototypic coupled computation is show in Figure 4. In this
coupled computation, RELAP5-3DC is coupled semi-implicitly to a CFD code which is
used to model the coolant systems in a reactor power plant. It is also coupled
synchronously to a code that performs a reactor power computation using a nodal
neutron kinetics methodology. Lastly, it is coupled asynchronously to a containment
analysis code. The data are exchanged among the several coupled codes as well as
between the coupled codes and the executive program is also shown in Figure 4. What
Figure 4 does not show is that each of the processes might be executing on a different
computational node and that the communication among the processes would be
carried over a network. Also not shown is that the computational nodes might be
different computer architectures from different vendors (i.e., a mix of different types
of UNIX workstations and PCs).

The user supplies the information needed by the executive program to initiate
coupled computation such as the one shown in Figure 4 in an input file. The input file
Is divided into four sections (the input needed to accomplish the fourth and fifth
responsibilities is contained in the same section of the input file). The input file for
the executive program that was used to execute the semi-implicit verification test
case is shown in Appendix A. The sections of the input file are delimited by reserved
keywords. The first section of the input file is delimited by the keyword ‘virtual’'. The
lines following this keyword contain the names of the computational nodes to be used
in the PVM virtual machine along with the location of the executable files to be used
by that computational node and the location of the input files for the processes to be
executed on that computational node (i.e., the working directory). Using this
information, the executive program builds a PVM hostfile for the PVM virtual
machine and starts the PVM daemon process on the one or more computational nodes.

The second section of the input file is delimited by the keyword ‘processes’ and
specifies the processes (i.e., codes) to be executed on the several computational nodes.
The names of the computational nodes contained in the first section of the input file
become keywords in the second section of the input file. One or more coupled processes
may be executed on each of the computational nodes. The specification of each coupled
process begins with a unique name for that process as well as any command line
parameters that are to be passed to that process as it begins its execution (i.e., names
of input files, output file, etc.). The names of the coupled processes are used to
distinguish multiple instances of the same executable file being executed in the PVM
virtual machine. As mentioned earlier, each process is labelled as ‘synchronous’ or
‘asynchronous’. These labels denote whether or not the time step size for the process

4

2001 RELAPS5 Users Seminar
Sun Valley, Idaho
September 5-8, 2001

Is determined by the executive program. Synchronous processes, such as processes
that are coupled semi-implicitly, need to use the same time step size for each
advancement so their time step size is coordinated by the executive program.
Asynchronous processes, such as processes coupled explicitly, need only exchange
data at fixed intervals and it does not matter what size of time step they use to
advance in time, only that they reach the same point in time to exchange data or write
the plottable output, printable output or restart files. Changes to the timestep logic
for codes asynchronously coupled through the executive are required to implement
this capability.

The third section of the input file is delimited by the keyword ‘messages’ and specifies
the data to be sent to and received from the other coupled processes. Each message
uses the unique name of the sending and receiving process along with the
specification of the data to be sent or received. The specification of messages occur in
pairs, one message specification for the process sending the data and the other
specification for the process receiving the data. The data items to be sent by the
sending process are specified in terms that the sending code can understand and the
same data items are specified to the receiving code in terms that the receiving code
should understand. This means that the same data item may be specified by a
different identifier for the sending and receiving processes. For example, the sending
code may refer to the liquid density using the code variable ‘rhof’ while the receiving
code may refer to the liquid density by the code variable ‘rholiq. The data
specifications are sent to coupled codes as they appear in the third section of the input
file. It is the responsibility of the individual coupled codes to understand their data
specification.

The last section of the input file is delimited using the keyword ‘timesteps’. This
section of the input file contains data for one or more simulation intervals to be
executed during the coupled computation. The data for each interval are the end time
for the simulation interval, the maximum and minimum time step sizes for the
simulation interval, the print, plot, restart write, and explicit coupling frequencies for
that interval along with other control information for that interval.

3. Sequence of Events in a Coupled Computation

A coupled computation can be divided into two phases, that are the input and
initialization phase of the computation and the transient simulation phase of the
coupled computation.

3.1 Input and Initialization Phase

The executive program is executed by the user in a manner appropriate for the users
operating system. The user specifies the input and the output files for the executive

5

2001 RELAPS5 Users Seminar
Sun Valley, Idaho
September 5-8, 2001

program as command line parameters (default input and output files are also
defined). The executive program reads the first section of its input file, constructs a
PVM hostfile, and starts the PVM daemon process on the several computational
nodes in the PVM virtual machine. Then the executive program spawns the several
coupled processes on the one or more computational nodes. The coupled processes
that are spawned read their respective input files, process the data contained in their
input files and then listen to receive messages from the executive process. After the
executive process has spawned all of the coupled processes, it sends messages to each
of the spawned processes containing the data specifications for messages to send to
and receive from the other coupled processes. Each spawned process proceeds with its
own input and initialization after the coupling data specifications have been received
from the executive process. The executive process listens to receive a message from
each process describing its initialization status and its run status. Each coupled code
sends its initialization status to the executive program at the end of its initialization
process. This initialization status may be zero (initialization successful) or one (errors
during input and initialization). They also send the executive program their run
status. A zero (0) denotes no transient is to be executed because input or initialization
errors were encountered or because this run was for input checking only. A one (1)if
the file is ready for transient simulation. The coupled computation is terminated if
any of the coupled processes return an initialization error or returns a zero run status.
The executive program determines the global initialization and run status and
broadcasts this status to all of the coupled processes.

3.2 Transient Computation Phase

Assuming that the initialization was successful for all of the coupled processes and
that the run status indicated that all coupled processes are ready to perform a
transient simulation, the executive program broadcasts an initial set of output control
times. This message specifies the next simulation times for the production of printed
output, printing of RELAP5-3D® minor edit variables, generation of plot data, writing
of restart data and the next time explicit coupling data transfers are to be performed.
The executive program assumes that each code will produce its own initial printed
output, plot data, and restart data automatically. The executive program then
coordinates the initial exchange of any explicit coupling data between asynchronously
coupled processes. When more than two codes are coupled explicitly, the data
exchange between the codes needs to be coordinated by the executive program. The
data exchange paradigm used in all RELAP5-3D® coupled computation using PVM is
that all messages received will be followed by an acknowledgement returned to the
sender. The sending process waits to receive an acknowledgement before sending the
next message. If all of the codes were to send all of their messages and then listen to
receive all of their messages, there would be a deadlock condition because all
processes would be sending and no processes would be listening for
acknowledgements. The executive program broadcasts the PVM identifiers of each of
the explicitly coupled processes to all of the explicitly coupled processes one at a time.
The process named in the broadcast message sends its data and all of the other

6

2001 RELAPS5 Users Seminar
Sun Valley, Idaho
September 5-8, 2001

explicitly coupled processes listen to receive the messages sent by the process named
by the executive process. This works like the old telephone party line where each of
the explicitly coupled processes must wait its turn to talk on the party line. Each
explicitly coupled process receives permission to send its data in turn. This process of
coordinating the exchange of explicit coupling data occurs each time the simulation
time reaches the time for an explicit exchange of data.

Once any initial explicit coupling data is exchanged, time step advancements may
begin. The executive program listens to receive a time step size from each of the
synchronously coupled processes. Each code coupled synchronously to another code
determines the time step size that it wants to use and sends it to the executive
program. The executive program receives time step sizes, determines a global time
step size as the minimum of the time step sizes received from the synchronously
coupled processes and broadcasts the global time step size back to the synchronously
coupled processes. This message also contains updated edit, print, and plot times so
that output may be produced each time step rather than at predetermined intervals.
Obtained output each time step is useful in debugging and this capability existed
previously in RELAP5-3D®. After the synchronously coupled processes receive the
global time step size from the executive program, they proceed with the time step
advancement, performing any communication needed with the other coupled
processes during the advancement. At the end of the advancement, just before the
point of no return, each of the synchronously coupled processes sends its
advancement status to the executive program. The point of no return is that point in
the computations sequence after which no backup may be performed in order to fix
any errors that occurred during the advancement. The executive program listens to
receive the advancement status from all of the synchronously coupled processes,
determines the global advancement status, and broadcasts the global advancement
status to the synchronously coupled processes. Assuming that no errors have occurred
during the advancement, the coupled codes and the executive program proceed to the
next time step advancement. Time step advancements are performed until the end
time for the simulation is reached. The executive program assumes that all of the
coupled processes will terminate automatically when the end time is reached. The
executive program waits for the coupled code to finish, and then shuts down the PVM
virtual machine.

3.3 Error Handling

During a time advancement, any number of situations may arise that would require
the solution algorithm to repeat a time step. When this occurs, an error condition is
set and the time step is repeated. If any one of the synchronously coupled processes
encounters an error during its advancement, it specifies the type of error in its
advancement status flag. There are three categories of advancement errors; errors
that cause the computation to terminate, errors that cause a backup and time step
repeat with a smaller time step size, and errors that cause a backup and time step
repeat with the same time step size. RELAP5-3D® has ten types of advancement

7

2001 RELAPS5 Users Seminar
Sun Valley, Idaho
September 5-8, 2001

errors that the code detects and for which there are methods for fixing the errors. If
the advancement status flag indicates a code termination, the executive sends a
message to terminate all of the coupled processes, waits for confirmation that all of
the coupled processes have terminated, and shuts down the PVM virtual machine as
iIf the computation had finished successfully. If the advancement status indicates that
any one of the coupled codes wants to perform a backup and a time step repeat, a
backup message is sent to all of the coupled processes and the time step is repeated
as if the time step had been successful. That is, each process sends its desired time
step size to the executive and a new global time step size is chosen. If the process
requesting the time step repeat needs to reduce the time step size, it sends a reduced
time step size to the executive program and the global time step size will be reduced
per that request. If the type of failure can be fixed using the same time step size, the
global time step size will remain the same and the advancement will be repeated from
the same starting point. The code requesting the time step repeat must remember the
reason for the time step repeat and proceed through a different logic path during the
repeated advancement to avoid the error that caused the time step repeat.

The previous discussion assumes that all of the coupled processes continue to execute
and do not fail catastrophically. If any of the coupled processes fails catastrophically
with a divide by zero, floating point overflow, etc., the process will be terminated by
the operating system of the computational node on which the process is executing.
The executive process monitors the execution status of all of the coupled processes
and sends a terminate message to all executing processes if one of them fails
catastrophically. It then waits for all of the processes to terminate and then shuts the
PVM virtual machine down. The same process of termination occurs if a process
exceeds its wait time while waiting for a message or message acknowledgement from
another process. The user defines the length of time a process is to wait to receive a
message or message acknowledgement from another coupled process. If the wait time
Is exceeded, the process exceeding the wait time sends a message to the executive
program and shuts itself down gracefully. If the executive program receives a time-
out message, it broadcasts a terminate message to all of the other coupled processes,
waits for them to terminate, and then shuts the PVM virtual machine down as if the
coupled computation had terminated normally. The wait time was implemented for
the case in which a coupled code might get into a infinite loop or deadlock where it
never sends an expected message but also never fails catastrophically.

In order for the user to understand the state of the coupled computation, status
messages are written to the terminal from which the executive process was executed
at ten second intervals. These messages are similar to the messages that
RELAP5-3D® writes to the terminal screen when it executes as an uncoupled process.
The messages contain the current simulation time and the current advancement
count. Failure messages are also written to the terminal so that the user will
understand why the coupled computation terminated. These status messages are also
written to the output file of the executive program.

2001 RELAPS5 Users Seminar
Sun Valley, Idaho
September 5-8, 2001

4. Verification of PVM Executive Program

The operation of the executive program was verified by executing the several test
cases described in the previous papers under the control of the executive program.
These test cases use two instances of RELAP5-3D® coupled to each other executing
on the same computational node. Two test cases were executed, one using explicit
coupling (Aumiller, 2001a) and the other using semi-implicit coupling (Weaver, 2001).
These test cases were chosen to exercise the executive program logic for
asynchronously and synchronously coupled computations. The results from the
execution of the test cases as a single uncoupled process were compared to the results
of the execution of the same test cases under the control of the executive program.
Examination of the two versions of each test case showed that identical results were
obtained on both the printed output (the printed output has five significant figures)
and on the plottable output (the plottable output is written as 32 bit real numbers
which equates to 7-8 significant figures). These test cases assume that no
initialization or timestep size reductions occur and in fact the input for these test
cases had previously been adjusted so that no timestep size reductions occurred.

Test cases were developed for each of the ten types of advancement faults in
RELAP5-3D®. Two versions of each of the ten test cases were developed, that is one
version of the test case as an uncoupled computation and the other as an coupled
version of the test case executed under the control of the executive program. The
results from the execution of the two versions of each test case were compared and
identical results were obtained. These ten test cases verify that the executive
program recognizes the several types of advancement faults, directs the coupled
processes to perform a code backup, and coordinates the repeated attempted
advancement.

Finally, several catastrophic failures were simulated by using the ‘kill' operating
system command to manually terminate one of the coupled processes during both the
input and initialization phase of a coupled computation and during the transient
phase of a coupled computation. The correct messages were written to the terminal
and output file for the executive program, the other process in the coupled
computation was shut down gracefully, and the PVM virtual machine was shut down
as designed. The time-out mechanism was also tested by manually interrupting the
execution of one of the coupled processes and observing that the correct time-out
messages were sent, that the processes terminated as directed, and the PVM virtual
machine was shut down.

5. Summary

An executive program has been developed to control and coordinate a computation
using several computational codes coupled together using the PVM message passing

2001 RELAPS5 Users Seminar
Sun Valley, Idaho
September 5-8, 2001

software. The design of this executive program has been described along with the
sequence of events that occur during a coupled computation. The verification testing
has demonstrated that the executive program performs as designed and that it is
capable of initiating a coupled computation, controlling the coupled computation
including recognizing and correcting faults in the coupled computation and
termination of the computation when it is finished. The operation of the executive
program was demonstrated using the RELAP5-3D® computer program but the
executive program is general enough to be used to couple any number of simulation
codes.

Acknowledgement

Work supported by the U. S. Department of Energy, under DOE Idaho Field Office
Contract No. DE-ACO07-991D13727.

References

Aumiller, D. L., Tomlinson, E. T., Bauer, R. C., 2001a, “A Coupled RELAP5-3D/CFD
Methodology with Proof-of-Principle Calculation,” Nuclear Engineering and
Design, Vol. 205, pp 83-90.

Aumiller, D. L., Tomlinson, E. T., Weaver, W. L., 2001b, “An Integrated RELAP5-3D
and Multiphase CFD Code System Using a Semi-Implicit Coupling Technique,”
available as B-T-3367 from DOE Office of Scientific and Technical Information.

Geist, A. et. al., 1993. “PVM (Parallel Virtual Machine) User’'s Guide and Reference
Manual,” Oak Ridge National Laboratory, ORNL/TM-12187.

Martin, R. P,,1995. “RELAP5/MOD3 Code Coupling Model,” Nuclear Safety, Vol. 36,
No. 2, pp. 290-299.

RELAPS5-3D, 1999. “RELAP5-3D Code Manuals, Volumes I, II, IV, and V,” Idaho
National Engineering and Environmental Laboratory, INEEL-EXT-98-00834,
Revision 1.1b. (See also the RELAP5-3D home page at
http://remus.inel.gov/relap5)

Weaver, W. L., Tomlinson, E. T., Aumiller, D. L., 2001, “A Generic Semi-Implicit
Coupling Methodology for use in RELAP5-3D,” available as B-T-3321 from DOE
Office of Scientific and Technical Information.

10

\1°)

C

§e]

— =

c @©
55 >
c x 2 o
—_ e =)
© @] o]
e O o
S £
a O
>
o
£
=
S
o
&)

Figure 1 Schematic of Coupled Solution

Figure 2 Schematic of Explicit

11

2001 RELAPS5 Users Seminar
Sun Valley, Idaho
September 5-8, 2001

Coupling Boundary Volume

- Q
1 >~ |
e
~ — -

Master Slave
Computational Computationa
Domain Domain

- h L N
2 |-‘ Il
/
N

Coupling Boundary Volum

Figure 3 Schematic of Semi-Implicit Coupling Methodology

12

2001 RELAPS5 Users Seminar
Sun Valley, Idaho

September 5-8, 2001
KINETICS | WK
A SRR

A N

; AN

f ‘ \~\\

Y N

AN i ‘s

| RELAP5-3D }..\ N\
] ~ ~. . .
i ~._ :..5’ \ N\
E) } EXECUTIVE
[_ i
. - %
: B — '/ ,A
u - /4 .
a ;~ e Y
. CFD &~ /
: L
: ’
. / ’
E p? === = === Edit Control
|
"‘CONTAINMENT’ ——————— Time Step Control

Semi-implicit
EEEEEEEEEEEEEEEE Asynchronous

Synchronous

Figure 4 Schematic of a Prototypic Coupled Computation

13

2001 RELAPS5 Users Seminar
Sun Valley, Idaho
September 5-8, 2001

Appendix A

Sample Input Deck for Executive Program

The input file for the semi-implicit verification test case is shown below. This test was
used to verify the semi-implicit coupling methodology (See Weaver, 2001). This test
case uses two instances of RELAP5-3D® named ‘test’ and ‘loop’ that are coupled semi-
implicitly (semi-implicit coupling requires that the processes be coupled
synchronously). The PVM virtual machine contains a single computational node (i.e.,
a UNIX workstation named ‘ws-rjw’) and both instances of RELAP5-3D® are executed
on this computational node. The upper and lower coupling boundary volumes are
named ‘Irtest’ and ‘uptest’ in the input decks for the two instances of RELAP5-3D®
and the upper and lower coupling junctions are named ‘lrcout’ and ‘upcrin’ in the
same input decks (i.e., input deck pvmtestp.i for the master process and input deck
‘pvmtestc.i’ for the slave process in the semi-implicit coupling). These component
names are used in the specification of the data that is to be exchanged between the
two processes. The simulation is executed for a total of ten simulated seconds.

pvm semi-implicit test case pvmtest

virtual
ws-rjw wd=/rjwul/wlw/151d/run ep=/rjwul/wiw/151d/run
processes
WS-rjw
loop synchronous relap5.x -i pvmtestp.i -0 pvmtestp.p
test synchronous relap5.x -i pvmtestc.i -0 pvmtestc.p
messages

semi-implicit
loop sends test Irtest 5 uptestl
loop receives test Icrout O upcrin O
test sends loop Ircout O upcrin O
test receives loop Irtest 1 uptest 1
timesteps
0.5000 0.000001 0.00625 403 1 20 500 O
1.0000 0.000001 0.00625 403 20 20 500 O
10.000 0.000001 0.0125 403 10 50 500 O

14

2001 RELAPS5 Users Seminar
Sun Valley, Idaho
September 5-8, 2001

SLAVE SYSTEM

SNGJ(180)

MASTER SYSTEM

Upper TDV (210)

* SNGJ (200)

ik

Upper Volume (190)

SNGJ (901)

uptest

upcrin r —

Middle
Test (6)
Section

Irtest

SNGJ(130)

Bypass (2)

* SNGJ (900)

Lower Volume (120)

f SNGJ (100)

Lower TDV (110)

15

	An Executive Program For Use With RELAP5�3D©
	Abstract
	1. Background
	2. Design of the Executive Program
	3. Sequence of Events in a Coupled Computation
	3.1 Input and Initialization Phase
	3.2 Transient Computation Phase
	3.3 Error Handling

	4. Verification of PVM Executive Program
	5. Summary
	Acknowledgement
	References
	Figure 1 Schematic of Coupled Solution Domain
	Figure 2 Schematic of Explicit Coupling Methodology
	Figure 3 Schematic of Semi-Implicit Coupling Methodology
	Figure 4 Schematic of a Prototypic Coupled Computation
	Appendix A

